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Calculation of the forming limit curve at 
fracture 
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The prediction of the forming limit diagram at fracture (FLDF) is of great importance, 
specially in cases where forming is controlled by fracture instead of necking. A physical 
model of coalescence is proposed in two cases of internal damage: (i) damage by deco- 
hesion of the particle matrix interface, and (ii) damage by failure of the particle. An 
analytical equation of the fracture curve is obtained in the case of damage by decohesion 
and this predicts a linear shape for the F LDF, which is in agreement with experiment. 
In contrast, in the case of damage by failure, a curved shape for the FLDF is obtained, 
which is also in agreement with experiment. Comparison of the models presented with 
other criteria is made. 

1. Introduction 
The deformation behaviour of a sheet metal can be 
represented in the diagram of the principal strains, 
el and e2, in the plane of the sheet. In this dia- 
gram (Fig. 1), two stages appear in a deformation 
process. The first stage, schematically represented 
in Fig. 1, is the quasi-uniform straining up to the 
occurrence of a neck as a result of a localized 
instability process. The points where the neck 
occurs for different linear strain paths is the form- 
ing limit diagram at necking (FLDN). Then, in the 
neck, because of the instability process, the strain 
path turn towards plane strain up to fracture. The 
level of the forming limit diagram at fracture 
(FLDF) cannot be directly determined by measure- 
ment of  the strain el because of the presence of 
a severe strain gradient. A way to obtain the local 
strain el [1] is to measure the strain e2, which is 
roughly unchanged from necking to fracture and 
is without a severe strain gradient, and the local 
thickness strain e3. The strain e~ is then derived 
assuming constant volume, i.e. ea + e2 + e3 = 0. 

Fig. 2 shows different FLDFs obtained experi- 
mentally. The shape can be linear or curved and 
in some cases (Fig. 2c) [2], the fracture curve 
cuts the necking curve, and in this event forming 
is limited by fracture before the required con- 

ditions for necking are achieved. In these cases 
it is particularly important to be able to predict 
the occurrence of fracture. 

The fracture surface of the material always 
exhibits a ductile fracture process for the usual 
forming materials. The study of the FLDF is 
therefore a study of ductile fracture under a 
biaxial state of stress, taking into account the 
change in the strain path before and after neck- 
ing. It requires the use of fracture criteria that 
can be divided into two main categories: 

1. Macroscopic criteria based on a relationship 
between macroscopic variables at fracture (i.e 
energy, stress, strain, mechanical parameter of 
damage [3, 4]). 

2. Microscopic criteria based on physical models 
of  the coalescence of voids leading to ductile 
fracture. 

The purpose of this paper is to use a physical 
model of void growth previously obtained [5] to 
establish a microscopic calculation of the FLDF. 
Comparison will be made with the calculations 
using macroscopic criteria and similarities between 
the two approaches will be shown. 

2. Macroscopic criteria 
Two main criteria will be used in this section: 
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Figure I Schematic representation of the strain path 
followed before and after necking. 

the Latham and Cockroft criterion [6], which 
is widely used, and the more recent Oyane criterion 
[7, 8]. Other criteria can also be used [9 -11 ]  in 
the biaxial state o f  stress but their predictions 
are too optimistic compared with experiment. 

2 . 1 .  L a t h a m  and  C o c k r o f t  c r i t e r ion  
The criterion is given by 

0 tie dee = P (1) 

where eel is the equivalent strain at fracture, ~1 
the maximum principal stress, and P a constant 
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Figure2FLDF in the case of: (a) mild steels [1], (b) 
3003 aluminium alloy, and (c) 5154-0 aluminium [2]. 
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of the material to be experimentally identified. 
If  this criterion is applied to a linear stress path 
characterized by o~ = 02/al for a material of the 
constitutive equation % =Ke'~, the following 
equation is obtained: 

K e e n .  : 

= fo ee dee P (1 -- al + ce~) 1/2 

where 

K /-eeI n 
+ (1 -- ~2 + eel) 1/2 Je~s ee dee (2) 

een is the equivalent strain at necking, 
al  and 0e~ are associated to the two branches 
of the strain path before and after necking, n is 
the constant strain hardening exponent, and K 
is a constant. 

As the second strain path is plane strain (a2 = 
0.5) the equivalent strain at fracture is given by 

3x/2P (n+l) 
ee, = ~ - ~ - - ( n  + 1) -- ees 

X 2 ( l _ a + a 2 ) l / 2 - - 1  

This calculation requires knowledge of ' the param- 
eter ees, i.e. the FLDN. 

For  a first strain path in plane strain, the frac- 
ture strain is simply given by 

= ( .  + l) (4) 

which is the best way to identify the parameter P. 
Fig. 3 shows a plot of the calculated FLDF 

associated with a given FLDN, for a value of 
P/K= 0.7 and for two cases of constitutive 
behaviour: (a) with the:constant strain hardening 
exponent n = 0.2, and (b) n = 0.2 in the range 
# = e2/e~ ~< 0, n varies linearly with p from 0.2 
to 0.4 in the stretching region: p > 0. The shape 
of the FLDF obtained is roughly linear with a 
different shape according to the hardening 
behavio~ur. 

2.2.  O y a n e  cr i te r ion  
The crition is given by 

1 + - - - -  dee = - -  dev = b 
0 d ae evo d 

(5) 

where 3' = Pv/Pvo is the relative density of the 
material during straining; f =  1/3 • {1 + [7/(1 -- 
3")] 1/2 }; ev = In (v/vo) = -- In 3' is the volume 
strain; d is a constant of  the material; b is a con- 
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Figure 3 Theoretical FLDF obtained from: (a) the Latham 
and Cockroft criterion with strain hardening depending 
on the strain path, (b) the Latham and Cockroft criterion 
with constant strain hardening, and (c) the Oyane criterion. 

stant related to volume damage as given by the 
second integral of the criterion; am, ae and ee 
are the mean stress, the equivalent stress and 
strain, respectively. 

Taking account of the two strain paths and 
introducing the plane strain value for the second 

,]} 

one, the fracture strain is given by 

31/2d 
e e f -  31/2 d + l x 

{ ees [ 1 - a  
b - - ~  31/2(1 d + a 2 )  ~/2 

(6) 

In order to compare the shape of the FLDF 
obtained by this criterion with the one of Latham 
and Cockroft (L & C), the parameters b and d 
have been identified on the level of  the FLDF 
in Fig. 3 in the case of uniaxial deformation and 
plane strain. The obtained FLDF has then been 
plotted on the same figure and it can be seen that 
there is a lower FLDF with the Oyane criterion in 
comparison to the L & C criterion in equibiaxial 
stretching. 

The fact that this criterion involved two param- 
eters (b and d) instead of one (P) in the L & C 
criterion allows adjustment of the level on the 



FLDF and also the slope. Furthermore, one of 
the parameters, b, can be related to internal 
damage. 

3. Microscopic criteria 
Microscopic criteria can be used to develop models 
to describe the coalescence process between voids. 
Some take account of the stress distribution 
between voids [12] but can only be applied in 
plane strain deformation, while others suppose 
brittle fracture between voids [13], but identifi- 
cation of the parameters generally gives higher 
values than expected. 

The approach presented here is to start with 
the two main types of internal damage [5]: (i) 
damage by decohesion of the particle matrix inter- 
face, and (ii) damage by failure of the particle. 

The void growth equation has been established 
[5]: 

e`[ = Bi e7 (7) 

where e~' is the radial deformation of the void, 
d e ' [  = d r l / r l ,  and e7 is the applied major principal 
strain. B i is a strain concentration factor given by 
- in the case of damage of decohesion: 

B i = c e ~ / e 7  + 0.64(1 + p) (8) 

where c is a constant parameter, and p = e J e l .  
In the case of damage by failure the strain concen- 
tration factor is given by: 

Ba = ~" = cst, B2 = B 3  = 0 

if the 1 direction coincides with the rolling direc- 
tion or the direction of extension of the cracks 
opened by failure of  the particle. 

Figure 4 SEM observation of the coalescence process on 
the fracture of an AK steel. 

important growth of the cavities to the point 
where their proximity is dangerous, a geometrical 
model is used. The coalescence is assumed to occur 
when the spacing between cavities reaches a 
critical value compared to the dimension of the 
cavity itself (Fig. 6): 

L i = a r i (9) 

where L i is the spacing between cavities and r i the 
radial dimension in the i direction. 

A perfectly ductile coalescence corresponds to 
a = 2. The cavities are supposed to be distributed 

3.1. Damage by decohesion 
The fracture surface resulting from this damage 
is of the ductile type and exhibits large cupules. 
Fig. 4 shows a zone of the fracture surface where 
the coalescence between two cavities is clear. 
Observation of the voids in a zone neighbouring 
the fracture surface shows the coalescence process 
at strains lower than the fracture strain because 
of the severe strain gradient near fracture. Gener- 
ally, coalescence can be observed in the direc- 
tion of the major principal strain (Fig. 5) [14]. 
Obviously ultimate fracture occurs in a plane 
normal to the principal strain by rapid coalescence 
of the big voids obtained in the primary coales- 
cence along the major strain direction. 

According to the observations that show an 

Figure 5 Coalescence between two cavities along the 
tensile axis, T, in a tough-pit copper deformed under 
uniaxial tension. (DL is the rolling direction.) 
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Figure 6 Parameters for the analysis of coalescence in the 
case of damage by decohesion. 

at the edges of an octahedral shape (Fig. 7). The 
initial size and spacing of the voids is determined 
by the mean initial volume of the voids and mean 
spacing between first neighbours determined by 
scanning electron microscopic (SEM) observations. 

It is possible, from an initial given distribution 
of spherical voids of the same shape to predict the 
evolution of the representative cube of Fig. 7 as 
the dimensions change according to the defor- 
mation applied and the void growth model. 

The criterion is always verified first in the 1 
direction of major principal strain in agreement 
with the observations previously reported in Fig. 
5 where the value of the parameter a is about 4. 
When the criterion is verified, it means that the 

( 2 J  

li 

Figure 7 Representative elementary cube of the material. 
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proximity of the cavities is sufficient to initiate 
a continuous process of coalescence, since when 
two voids coalesce in the 1 direction, overlap of 
voids in the 2 direction becomes more important, 
and as a consequence the area bearing the load is 
weakened and fails leading to macroscopic frac- 
ture. The overlap of voids in the 2 direction, 
without coalescence in the 1 direction, is obtained 
for a value of a equal to 4 for the regular network 
of cavities used. 

The evolution of the spacing and size of the 
cavities is given by 

li = 10 exp (el) (10) 

rl = ro exp (B1 el) (11) 

where B1 = (c + 0.64) + 0.64 p 

Then at necking: 

lln = lo exp (els) (12) 

tin = r0 exp (B1 e~a) (13) 

Let the difference of the levels between the FLDN 
and FLDF be x: 

x = Ael = e l f - -e ra  (14) 

Between necking and fracture the evolution of the 
geometrical parameters is: 

ll = /in exp (x) (15) 
rl = rm exp (BI ~ x) (16) 

Introducing the coalescence criterion, it becomes: 

1 (a-~o) x - (c -- 0.36) In 

[ 0 . 6 4 ]  (17) 
-- 14(0.36_c)  p eln 

Using the assumption of plane strain defor- 
mation between necking and fracture, the follow- 
ing relation between the strains can be used: 

e2f = e2n = Petn (18) 

which finally gives 

_ 1 ( ~ )  O.64 
elf (c- -0 .36)  In (c- -0 .36)  e2'(19) 

This equation is the analytical equation of the 
FLDF. 

For a constant value of the parameter c, the 
FLDF is a straight line of slope, Po, given by: 

eo = -- 0.64/(c -- 0.36) (20) 



Such a line is experimentally observed and the 
experimental slope is of  the order of: 

- - e o  e [0.5, 1.51 (21) 

which imposes for the parameter c: 

c E [0.8, 1.6] (22) 

This parameter c, taken from the Rice and Tracey 
[15] model of  cavity growth is calculated to be 
1.66 by the authors in the case of  a spherical 
cavity in a non-hardening matrix. Another proposal 
[16] gives, for a two-dimensional problem, the 
change of the c parameter with the shape of  the 
void: 

c = 1 + (R u / R x )  (23) 

which gives for a sphere: c = 2 and an infinite 
cylinder c = 1. The values obtained in this analysis 
are reasonable if they are taken as mean values of  
the parameter c over all the changes in shape of  
the voids involved by the total deformation 
process. A value of  c = 1.0 can be used as a first 
approximation.  

The slope of  the FLDF depends on the c par- 
ameter, which is influenced by the shape of  the 
voids and the hardening of  the matrix. The level 
o f  the FLDF also depends on the parameter c and 
principally on the initial damage and the criterion 
parameter 0~. In the case of  a plane strain defor- 
mation for the first stage of the strain path, the 
level of  the FLDF is given by 

e~ - ( c - -  0.36) in = 

1.56 In (Io/a ro) (24) 

using the assumption c = 1.0. 
I f  we want to identify the value of the param- 

eter a ,  it is necessary to know the level of  the 
FLDF and the amount  of  initial damage. For an 
AK steel the level of  the FLDF in plane stress is 
about 

e~ = 1.5 (25) 

The initial damage can be determined by  SEM 
observations, and the mean volume fraction of  the 
voids is estimated to be 

Cvo E [5 10 -4, 2 10 -3] (26) 

But fracture will occur in a region of  most impor- 
tant  concentration of  voids. Fig. 8 [17] shows 
the probability of  obtaining a volume fraction 
C'vo = x  Cvo in a material containing a mean 
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Figure 8 Probability of finding a volume fraction greater 
or equal to x Cvo in a material of mean volume fraction 
Cvo- 

volume fraction Cvo. According to previous work 
[18, 19], the probability in the necking or fracture 
zone, is estimated to be 10 -4, which leads to a 
volume fraction of voids seven times greater than 
the mean value: 

C" o E [3.5 10 -3, 1.4 10-21 (27) 

From the shape of  the representative cube of  the 
material in the fracture zone it becomes 

= 0.72 ( C o )  -1'3 (28) 
which gives 

a E [4, 6.5] (29) 

Another way to look at this value is to express 
the criterion as a function of  the dimension of the 
matrix between voids, X i (Figl 6) and the diameter 
of  the cavities di: 

X i = fld i = (or -- 2) ri (30) 

which gives 

/3 E [1, 2.251 (31) 

This result is in agreement with observations 
[20, 21] where it is reported that coalescence 
occurs when the dimension of the matrix between 
voids is equal to once or twice the diameter. It 
should be noticed that a value of  a = 4 (r 1), 
which is the condition of  overlap between voids 
in the 2 direction, needs a volume fraction o f  
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voids 20 times greater in the fracture zone to 
agree with experiment. Such concentration of 
cavities is obtained for an unrealisticly low value 
of probability (less than 10-2~ A similar criterion 
by Brown and Embury [22] consists in writing 
that the dimension of the matrix between the 
cavities in the 2 direction (direction of fracture) 
is equal to the larger dimension of the void (i.e. 
in the 1 direction): X2 = dx. A comparison with 
our approach requires a change in the value of the 
o~ parameter with the strain path in a range: a @ 
[3, 5] to fit the Brown and Embury criterion. 
A calculation made with this last criterion [16], 
assuming only one linear strain path up to fracture, 
gives results in agreement with experiment but do 
not provide evidence, in an analytical equation of 
the FLDF, for the roles of the different param- 
eters as they appear in this analysis. 

The model proposed in this work is compatible 
with other models used and has the advantage of 
predicting the linear shape of the FLDF and to 
give its analytical equation where the following 
values of the parameters can be proposed: 

c = 1.0 
o ~ = 5  

lo/ro = 1.3 Cvao/a 

where Cvo is the mean volume fraction of voids 
in the initial state or just after nucleation. 

It should be noticed that the fracture strain, 
e3f, is not constant at fracture as proposed by a 
macroscopic fracture criterion [23 ]. In this model: 

, ( , ) [  0.64] 
--ear (c- -0 .36)  In + 1 + (0 .36--c)  e2f 

(32) 
which shows that the fracture strain is generally 
not constant for all the FLDF except when c = 
1.0, the slope then being equal to -- 1. 

3.2. Damage by failure 
In contrast to damage by decohesion, the crack 
opened by failure of the particle always remains 
relatively small. It is therefore impossible to 
obtain for this type of damage the same coales- 
cence process as in the case of decohesion. SEM 
observations near the fracture zone do not show 

2 x 21/2t" {hl exp [2~" (eln + x ) ]  + t t O  2 

and occur when the cavities are relatively small 
and far from each other. 

In this work it is proposed, after the work of 
McClintock [27], that coalescence proceeds by 
shear band instability between cavities. From the 
work of McClintock, the moment at which the 
instability occurs is given by [27] 

111 (7 e 31/2 ha(h~ + h~) 1/2 
7 e  - - ( 3 3 )  

ee 12 13 

where h i and l i are the size of the cavities and 
their spacing in the "i direction, respectively. 

In this model, fracture occurs when the rate 
of hardening decreases to a critical value con- 
trolled by the geometry of the distribution of the 
damage. The distribution of the cavities is assumed 
to be the same as that in the case of decohesion 
and the constitutive equation of the material is 
taken as 

" (34) O e = K ee 

tgn 

which leads to 

7e = n/ee (35) 

As in the case of the calculation of the FLDF 
according to the Latham and Cockroft criterion 
(Fig. 3), the hardening behaviour of the matrix 
will be treated in two cases: (i) with constant 
hardening exponent: n = 0.2, and (ii) with con- 
stant hardening exponent: n = 0.2 in the range 
p=e2/ex  <~0, linear variation of the strain 
hardening from 0.2 to 0.4 when p changes from 
0 to  1. 

It is further assumed that the dislocation 
structure developed during the first stage of the 
strain path is sufficiently stable to impose the 
same work hardening exponent during the second 
stage in plane strain. 

The damage growth equation can be written: 

hi = ho exp (~el) = ho exp (~'ea~ + x) (36) 

h2  = ho 2 

h3 = h% 

where x = Ael = eat / - -e ls .  
After some transformations, 

equation giving x is obtained: 

hE, }1/2 [(1 +/9 + 02) 1/2 e~a + x] 

exp [-- (eln + x)] 

any large cavity [24-26].  The coalescence mech- 
anism cannot be observed, and so must be abrupt 

(37) 

(38) 

the following 

1 (39) 

To solve this equation it is necessary to know 
the level of the FLDN, eln, the initial configuration 
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Figure 9 Theoretical FLDF obtained in the case of: 
(a) damage by failure with strain hardening depending 
on the strain path, (b) damage by failure with constant 
strain hardening, and (c) damage by decohesion. 

of the cavities, hoi and lo, and the void growth 
parameter, ~'. Identification of ~" by relative density 
changes gives ~" ~ 4. 

Only in plane strain, the FLDF does not 
depend on the FLDN, as in this case e~f is given by 

ol/2u (hl exp (2~" elf) + h2o=) 1/2 2 x ~. ,% 

It n exp ( - -  e l f  ) elf = 1 
(40) 

Fig. 9 shows a plot of the FLDF obtained, for 
the same level of plane strain, in the case of 
decohesion and in the case of damage by failure, 
both with hardening behaviour. It can be seen 
that the shape is curved in the case of damage by 
failure and that the slope in the stretching region 
(p/> 0) can be positive. 

Fig. 10 shows a plot of the calculated and the 
experimental FLDF of a 3003 aluminium alloy 
presenting damage by failure of the precipitates 
[5]. The following parameters have been derived 
from SEM observations: ho, = 0.01, h%_= 3, 
h% = 2, ~" = 4, lo = 10 (length in/~m), and harden- 
ing behaviour depending on the strain path. The 
agreement between experimental and calculated 
FLDF is quite good and this shape of the FLDF 
is related to this type of damage, i.e. by failure 
of the particle. 
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Figure lOComparison between calculated and experi- 
mental FLDF for a 3003 aluminium alloy presenting 
damage by failure of the precipitates. 

4. Conclusions and discussion 
This study shows that the type of damage controls 
the shape of the FLDF: 

1. A linear straight line is associated with 
damage by decohesion. 

2. A curved shape is associated with damage 
by failure. 

The level of the FLDF is, in both cases, very 
dependent on the amount of initial damage. 

The calculation proposed gives an analytical 
equation of the FLDF in the case of damage by 
decohesion which does not depend either on 
the shape and level of the FLDN or on the rheology 
of the material. In contrast, in the case of damage 
by failure, the FLDF can only be numerically 
determined and depends on the parameters men- 
tioned above. 

It should be noted that in most industrial 
materials, on the fracture surface many very small 
cupules can be observed between large ones. This 
phenomenon is not taken in account in this study. 

According to the shape of the FLDF obtained, 
it seems that the Latham and Cockroft, and 
Oyane criteria are related to the case of damage by 
decohesion. A comparison can be carried out 
between these calculations. In fact ,  the L & C 
criterion involved only one parameter P that can be 
identified by the level of the FLDF in plane strain. 
A comparison with the model proposed gives 

1801 



[P~l/(n+l) 1 ( l o )  

e~ = ~(n+ 1)1~)  - (c--0.36~) In ~o 

(41) 

The parameter P appears to depend on the 

matrix rheology, the amount o f  initial damage 

and the two parameters of  the model,  c and a. 

It is more difficult to show such relation with 

the Oyane criterion, but it is nevertheless remark- 

able to notice that the Oyane criterion involves 

two parameters to identify b and d and that the 

model developed also involves two parameters, 

c and a. The advantage of  the model proposed in 

this work is that the values o f  the parameters 

depending on the material can be determined by 

metallurgical observations and not only be iden- 

tified afterwards by experiment. In this way a 

physical model  can be more efficient than a mech- 

anical one in order to predict the behaviour of  a 

given material. 
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